

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Spring 2017
Pre Lab 13 – Dictionaries

Assignment: Pre Lab 13 – Dictionaries
Due Date: Pre Lab quiz is due Monday, May 8th by 8:59:59 AM
Value: 10 points (8 points during lab, 2 points for Pre Lab quiz)

This week’s lab will give you practice with using dictionaries.

(Having concepts explained in a new and different way can often lead to a
better understanding, so make sure to pay attention as your TA explains.)

CMSC 201 – Computer Science I for Majors Page 2

Part 1A: Review – Dictionaries

A very useful data type built into Python is the dictionary. Dictionaries are
sometimes found in other languages as “associative memories” or “associative
arrays.” Dictionaries are data structures that map a key to a value. So, in the
example below, we have a dictionary that maps the key ‘a’ to the value

‘alpha’; the key ‘o’ to the value ‘omega’; and the key ‘g’ to the value ‘gamma’.

(Image from https://developers.google.com/edu/python/dict-files)

We can create this dictionary with this line of code:

greek = {'a': 'alpha', 'o': 'omega', 'g': 'gamma'}

Dictionaries may look a lot like lists, but there are a few key differences:

1. A dictionary uses curly braces instead of square brackets
2. A dictionary is made up of (key, value) pairs
3. The key and value are separated by a colon (:)

4. The (key, value) pairs are separated by a comma (,)

5. The keys must be unique (just like the indexes of a list are unique)

Lists are indexed by order, which we see as a range of numbers. Dictionaries
are indexed by association, or their key values. Keys can be any immutable
type, and every key in a dictionary must be unique. Strings, floats, and
integers are common choices for a key.

https://developers.google.com/edu/python/dict-files
https://developers.google.com/edu/python/dict-files

CMSC 201 – Computer Science I for Majors Page 3

Part 1B: Review – Dictionary Functions
We can start by looking at how we could create a simple dictionary. Let’s
create a new dictionary called animals.

animals = {"Clifford" : "dog", "Hedwig" : "owl",

 "George" : "monkey", "Kha" : "snake",

 "Laika" : "dog"}

In this dictionary, we have mapped famous animals, using their name as the
key, and their species as the value. Since there may be multiple animals of the
same species (e.g., Clifford and Laika are both dogs), it makes sense to use
the unique value (the name) as the key.

Using a dictionary, we can perform a number of operations. The examples
below use the animals dictionary defined above.

A. Iterate through the dictionary:

for name in animals:

 print(name, "is a famous", animals[name])

OUTPUT:

Laika is a famous dog

George is a famous monkey

Clifford is a famous dog

Kha is a famous snake

Hedwig is a famous owl

B. Access a specific entry:

print("Kha is the", animals["Kha"], \

 "from 'The Jungle Book'")

OUTPUT:

Kha is the snake from 'The Jungle Book'

C. Safely access a specific entry:

print("Kha is the", animals.get("Kha"), \

 "from 'The Jungle Book'")

if there was no "Kha" key, this would simply

print out None, rather than crashing

CMSC 201 – Computer Science I for Majors Page 4

D. Add something to the dictionary:

animals["Punxsutawney Phil"] = "groundhog"

E. Updating the value of something in the dictionary:

animals["Hedwig"] = "snowy owl"

F. Deleting something from the dictionary:

Laika was a Soviet space dog, the first

animal to orbit the Earth. She did not

survive more than a few hours in space. :(

del animals["Laika"]

G. Checking if a key is present in the dictionary:

"Laika" in animals

this will return False, as Laika's no longer in

the dictionary

"Clifford" in animals

this will return True

H. Checking if a key is present in the dictionary:

I. Dictionaries also have methods that enable some additional functionality.

In addition to the commands and examples above, here are some of the
more helpful methods we can use.

These both return a “view” by default, so we must cast them to a list to
use them.

a. list(animals.values())

Returns a list of the values in dictionary animals
['groundhog', 'snowy owl', 'monkey', 'dog',

 'snake']

b. list(animals.keys())

Returns a list of the keys in dictionary animals
['Punxsutawney Phil', 'Hedwig', 'George',

 'Clifford', 'Kha']

CMSC 201 – Computer Science I for Majors Page 5

Part 1C: New Material – Lists as Values

Although we didn’t discuss it in class, it is possible to use lists as the value in a
(key, value) pair, and to update the list as new items are entered that belong
with that key. In order to do so, though, we must pay attention to and handle
two different scenarios:

1. The key does not yet exist in the dictionary
a. We must create a new key and start the list from scratch

2. The key already exists in the dictionary
a. We must append to the existing list, without overwriting it

To accomplish these, the first thing to do is use the .get() function to access

a key’s value. The .get() function is safer than square brackets, because if

the key does not exist it will return None (where square brackets would cause

an error).

Once we’ve determined if the key already exists, we can either create the list
from scratch, or append to the existing list, depending on the result. For
example, code to accomplish that might look like the following.

if the key doesn't already exist in the dictionary

if myDict.get(theKey) == None:

 myDict[theKey] = [newValue]

else:

 myDict[theKey].append(newValue)

And when we want to access something in the list of values, we’ll need to first
index into the dictionary (using the key) and then into the list (using regular
indexes).

print all the elements of a key's value list

valueList = myDict[knownKey]

for i in range(len(valueList)):

 print(valueList[i])

